Joel's Notes

Mechanics

| Linear | Rotational |

| -------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |

| Displacement x\vec x | Angle θ\vec \theta |

| Mass mm | Moment of inertia I=αMR2I=\alpha MR^2 where MM is mass and RR is the largest distance a particle is from axis or I=miri2I=\sum m_ir_i^2 for iith particle [kgm2kg\cdot m^2] |

| Velocity v=ΔxΔt\vec v={\vec{\Delta x}\over\Delta t} [ms\frac{m}s] | Angular velocity ω=ΔθΔt\vec \omega=\frac{\Delta\vec \theta}{\Delta t} [rads\frac{\text{rad}}{s}] vt=ωrv_t= \vec \omega r ([vtv_t=tangential velocity] must be in rads) |

| Momentum p=mv\vec p=m\vec v [kgmskg\cdot m\over s] | Angular Momentum L=Iω\vec L=I\vec \omega [kgm2skg\cdot m^2\over s] |

| Impulse Δp=pfp0\vec{\Delta p}=\vec{p_f}-\vec{p_0} [ditto] Δp\vec{\Delta p} is also written as JJ | Twirl ΔL=LfLi\vec{\Delta L}=\vec{L_f}-\vec{L_i} - change in angular momentum |

| Force F=ΔpΔt\vec F=\frac{\vec{\Delta p}}{\Delta t} - average impulse over time [NN or kgms2kg\cdot m\over s^2] | Torque τ=ΔLΔt\vec \tau=\frac{\vec{\Delta L}}{\Delta t} - average twirling over time [NmN\cdot m or kgm2s2kg\cdot m^2\over s^2] |

| Kinetic energy K=12mv2K=\frac12mv^2 | Rotational kinetic energy Krot=12Iω2K_{rot}=\frac12I\omega^2 |

Derivations