Linear 1st-Order ODEs

My Notes on Solving ODEs

- homogeneous: $y_h = C_0 e^{-\int p dx}$
- inhomogeneous: $y = e^{-\int p dx} (\int e^{\int p dx} r dx + C)$ derived from integrating factor $\mu = e^{\int p dx}$

Non-Linear 1st-Order ODEs

- Bernoulli equation for $y' + py = qy^n$:
 - 1. let $u = y^{1-n}$

y' + py = r

- 2. Transform into u' + p(1-n)u = q(1-n) to use integrating factor
 - (a) You can isolate y in terms of u and find y' in terms of u and u' to turn everything in terms of u

- f has equilibrium at y* if the ODE is autonomous (meaning $f = \frac{dy}{dt}$ is the same regardless of t) and y-val for $f(y^*) = 0$
 - stable vs. unstable can be determined by using table of factors or evaluating f'(y*)'s sign
 - Semi-stable means stable in one direction and unstable on the other
- separation of variables: $\frac{dy}{dx} = f(x)g(y) \rightarrow \int \frac{dy}{g} = \int f dx + C$
- reduction for separation of variables:
 - if $y' = f(\frac{y}{x}), u = \frac{y}{x}$ and y' = u'x + u ($\because y = ux$)
 - if y' = f(ax + by + c), u = ax + by + c and find y' in terms of u and 11'

Existence and Uniqueness

- Numeral Methods
- (forward) Euler: $y_{n+1} = y_n + hy'_n$ is explicit : all RHS terms known • For y' = f(x, y) and $y(x_0) = y_0$ meaning point is (x_0, y_0)
 - backward Euler: $y_{n+1} = y_n + hy'_{n+1}$ is implicit
- Theorem 1 (existence theorem) if f(x, y) continuous at all points in R_1 containing point (x_0, y_0) then f has 1+ solns y(x) passing through the point
- Theorem 2 (uniqueness theorem) if f(x, y) and $f_y(x, y)$ (AKA $\frac{\partial f}{\partial y}$) con- All explicit algorithms are conditionally stable and implicit is always tinuous in R_2 containing point, then f has a **unique** solution passing (unconditionally) stable. through the point
- Notes
 - $-R_1$ is region containing point where f continuous
 - $-R_2$ is region containing point where f_y continuous
 - $-R_1 \cap R_2$ is region of validity and x-range is interval of validity

10. Laplace Transform

- Complete the squar if cannot separate denominator and use s-shift
- $\mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt = F(s)$
- Solving ODEs: $ay'' + by' + cy = f \rightarrow Y(s) = \frac{F(s) + ay'_0 + asy_0 + by_0}{as^2 + bs + c}$

global error = RMS(local errors)

Method of Reduction of Order

Find y_2 from y_1 for $y_h = c_1y_1 + c_2y_2$

$$y_2 = uy_1, y_2 = y_1 \int \frac{e^{-\int p \, dx}}{y_1^2} dx$$

homogeneous ODE if λ is double root: $y_h = c_1 e^{-\frac{b}{2a}x} + c_2 \mathbf{x} e^{-\frac{b}{2a}x}$

if λ complex, $y_h = Ae^{\alpha x}\cos(\beta x) + Be^{\alpha x}\sin(\beta x)$ where $\alpha = -\frac{b}{2a}, \beta = \frac{\sqrt{4ac-b^2}}{2a}$

Particular Part

Method of Underdetermined Coefficients

Method of Variation of Parameters

Table 8.1: Choices for y_p for undetermined coefficients method

	Table 5.1. Choices for g_p for undetermined coefficients include		
	If $r(x)$ is	then y_p is of the form	
	C (a constant)	Α	
r	x^n (<i>n</i> must be a positive integer)	$A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0$	
	$e^{\gamma x}$ (γ either real or complex)	$Ae^{\gamma x}$	
	$\cos(\omega x)$ or $\sin(\omega x)$	$A\cos(\omega x) + B\sin(\omega x)$	
	$x^n e^{\gamma x} \cos(\omega x)$ or $x^n e^{\gamma x} \sin(\omega x)$	$(A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0) e^{\gamma x} \cos(\omega x) + (B_n x^n + B_{n-1} x^{n-1} + \dots + B_1 x + B_0) e^{\gamma x} \sin(\omega x)$	

Construct y_p from y_h 's y_1 and y_2

$$y_p = -y_1 \int \frac{y_2 r}{W} dx + y_2 \int \frac{y_1 r}{W} dx$$

Wronskian $W = y_1 y'_2 - y_2 y'_1$

Electrical & Mechanical Applications References

Electrical Applications

aprillade C : Find Electrica) itar I = dQ Vi = Q inductance L :: Henry V((モ)=1江 Kicheffer Livert Law: whet Flowing into ade = whent flowing out for ade Existence & Uniqueess Thing. the f=y' (coryo) in K, when K, is egen where I continues, he region by if fartinged then It solas & wistere than if if cutinues then I solo to uniqueness them

Setting up ODE for free oscillations – Find ω & λ

• Use Newton's 2nd law for straight-line movement:

$$mx'' = \sum F = F_k + F_\beta$$

Where

- m = massx(t) = displacement measured from equilibrium $F_k = \text{spring force}$ $F_{\beta} = \text{friction (damping) force}$
- $F_k = -kx$ (a) proportional to distance x, (b) always carries a negative sign (-) (always oppose the motion); (c) if multiple springs, add up all individual spring forces
- F_β = -βx' (a) proportional to velocity x', (b) always carries a negative sign (-) (always oppose the motion); (c) if multiple dampers, add up all individual friction forces
- Force due to the weight mg of the mass does not appear in the equation even in vertical oscillation since mg is canceled by the initial stretch/compression of the spring at rest.

 $x'' + \frac{\beta}{m}x' + \frac{k}{m}x = 0$

- Put ODE in the form
- to identify natural frequency $\omega^2 = k/m$ and damping constant $\lambda = \beta/(2m)$

Rotational oscillations – Horizontal bar

- J = moment of inertia of mass m about point of rotation
- $\theta(t) =$ angular displacement measured from equilibrium
- T_k = torque of spring force about point of rotation T_β = torque of friction force about point of rotation
- Equilibrium is assumed to be horizontal
- Always assume small angle θ . Thus $\sin \theta \approx \theta$ and $\cos \theta \approx 1$
- $J = ml^2$, moment of inertia of m about point of rotation (provided or obtained from table)
- $T_k = -(F_k)(r_k) = -(a \sin \theta)(a \cos \theta) \approx -ka^2 \theta$
 - $\star\,$ always carries a negative sign (–) (always oppose the motion)
 - \star F_k is spring force * r_k is torque arm = perpendicular distance from point of rotation to line of force F_k
- $T_{\beta} = -(F_{\beta})(r_{\beta}) = -\beta \frac{d}{dt}(b\sin\theta)(b\cos\theta) \approx -\beta b^2 \theta'$
 - \star always carries a negative sign (–) (always oppose the motion) \star F_{β} is friction force
 - * r_{β} is torque arm = perpendicular distance from point of rotation to line of force F_{β}
- Torque due to the weight mg of the mass does not appear in the equation since it is canceled by the initial stretch/compression of the spring torque at rest. • Put ODE in the form

$$\theta'' + \frac{\beta b^2}{m^2} \theta' + \frac{ka^2}{m^2} \theta = 0$$

to identify natural frequency $\omega^2 = \frac{ka^2}{ml^2}$ and damping constant $\lambda = \frac{\beta b^2}{2ml^2}$

springe free arcillation - only I.C.s Forced exillation - antiquers enterned force acting on mus dampel - friction underped - no from Free Undangel - Asim(ve+ 5) = C, con we + C2 sim we where 5= aten2 (C1, C2) firm X"+ h x=0 where we h A= (1+42 - period T= 2 T; f= +, 5 why CIEASINS CZ = Acoss Free dampel - viceous fraction what a v so mo"=-4x0-8x0" x"+z7x'+w2x=0 - r=- I + VIZ-w" article frequency with a find and with I = find a start I = find and the first of the sort of the - firstin/langing force Fp = - px

T=force * line to line of force

System of ODEs

We now have a system of two 2nd-order ODEs

$$m_1 x_1'' + \beta x_1' - \beta x_2' + (k_1 + k_2) x_1 - k_2 x_2 = k_1 Y_0 \sin(\gamma t)$$

$$m_2 x_2'' - \beta x_1' + \beta x_2' - k_2 x_1 + (k_2 + k_3) x_2 = 0$$
(9.57)

This system can be put in matrix form as shown below:

$$\begin{pmatrix} m_1 & 0\\ 0 & m_2 \end{pmatrix} \begin{cases} x_1''\\ x_2'' \end{cases} + \begin{pmatrix} \beta & -\beta\\ -\beta & \beta \end{pmatrix} \begin{cases} x_1'\\ x_2' \end{cases} + \begin{pmatrix} k_1 + k_2 & -k_2\\ -k_2 & k_2 + k_3 \end{pmatrix} \begin{cases} x_1\\ x_2 \end{cases} = \begin{cases} k_1 Y_0 \sin(\gamma t)\\ 0\\ (9.58) \end{cases}$$

$$[\mathbf{M}]\{x''\} + [\boldsymbol{\beta}]\{x'\} + [\mathbf{K}]\{x\} = \{f\},$$
(9.59)

where [M] is the mass matrix, $[\beta]$ the friction coefficient matrix and [K] the stiffness coefficient matrix. It should be noted from Eq. (9.58) that, if the analysis is done correctly, the stiffness coefficient matrix should be symmetric.

Textbook & Code References

Existence & Uniqueness

10.2.10 General procedure to perform Laplace transform

Given a function f(t), below is the general procedure to find its Laplace transform F(s) with The use of Table 10.1. Note: Laplace transform of a product of two functions, e.g., f(t)g(t), is beyond the scope of this class, except two special products $e^{at}f(t)$ and $t^{n}f(t)$.

- Break down f(t) into components that match functions in the $t\mbox{-domain}$ column, e.g., $\cos(\omega t)$, $\sin(\omega t)$, etc.
- Find the corresponding transform F(s) in the s-domain column • If the function in t-domain is of the form $e^{at}f(t)$, then

 - \star leave out e^{at} \star find Laplace transform of f(t) to get F(s)
 - \star apply s-shift (transform pair #12)
- If the function in t-domain is of the form $t^n f(t)$, then
 - \star leave out t^n
 - \star find Laplace transform of f(t) to get F(s)
 - ★ apply transform pair #9
- If the function in t-domain is of the form u(t-a)f(t), then use the procedure for transforming a "cut-off function" (transform pair #13)

Forward Euler

function [t,y] = euler(f,t0,tf,y0,h) t = t0:h:tf; y(1)=y0; for n = 1:length(t)-1 $y(n+1) = y(n) + h^*f(t(n),y(n));$ end

end

Backward Euler function [t, y]=euler(f, t0, tf, y0, h) t=t0:h:tf; y(1)=y0; for i=1:length(t)-1 y(i+1)=... %derive eqn first end end

function [t, y]=backward_euler(t0, tf, h, y0)
 t=t0:h:tf;
 y(1)=y0;
 for n=1:length(t)-1
 y(n+1)=(y(n)+4*h*cos(3*t(n+1)))/(h+1);
 cond end end

sigma=10; b=8/3; r=20; tspan=[0,30]; Y0=[1,1,1];

[t, Y]=ode45(@(t,y) lorenz(t, y, sigma, r, b), tspan, Y0)

plot(**t, Y)** xlabel('t') ylabel('x, y, z') legend('x(t)', 'y(t)', 'z(t)') title('Lorenz Attractor, x(t), y(t), z(t)')

function Yp=lorenz(t,Y,sigma,r,b)
 Yp=zeros(3,1);
 Yp(1)=sigma*(Y(2)-Y(1)); Yp(2)=r*Y(1)-Y(2)-Y(1)*Y(3); Yp(3)=Y(1)*Y(2)-b*Y(3);

NUM POINTS=20:

x_points=linspace(-1, 1, NUM_POINTS); y_points=linspace(-2, 2, NUM_POINTS);

[X, Y]=meshgrid(x_points, y_points);

v_x=ones(NUM_POINTS, NUM_POINTS); v_y=X+Y.*(1-Y); %ODE(X, Y)

% Normalize

length = sqrt(v_x .^2+ v_y .^2); v_x = v_x./length; v_y = v_y./length;

quiver(X, Y, v_x, v_y); title("Direction Field for y'=x+y(1-y)") xlabel("X") ylabel("Y") axis([-1, 1, -2, 2]) Sum and Difference Formulas

 $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$ $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$

 $\tan(\alpha) \pm \tan(\beta)$ $\tan(\alpha \pm \beta) = \frac{\tan(\alpha) - 1}{1 \mp \tan(\alpha) \tan(\beta)}$

Sum to Product Formulas

 $\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$ **Double Angle Formulas** $\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$ $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$ $\sin(\alpha) - \sin(\beta) = 2\cos(\beta)$ $\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$ $\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$ $\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$

Cofunction Formulas

 $\tan(2\theta) = \frac{2\tan(2\theta)}{1 - \tan^2(\theta)}$ $\sin\left(\frac{\pi}{2}-\theta\right)=\cos(\theta)$ $\cos\left(\frac{\pi}{2}-\theta\right)=\sin(\theta)$ $\csc\left(\frac{\pi}{2}-\theta\right) = \sec(\theta) \quad \sec\left(\frac{\pi}{2}-\theta\right) = \csc(\theta)$ $\tan\left(\frac{\pi}{2} - \theta\right) = \cot(\theta) \quad \cot\left(\frac{\pi}{2} - \theta\right) = \tan(\theta)$

ode45

options=odeset("RelTol", 1e-4, "AbsTol", 1e-6, "Refine", 12);

[t, y]=ode45(@myODE, tspan, y0, options);

10.3.1 General procedure for inverse Laplace transform

Given a function in s-domain, F(s), below is the general steps to find its inverse Laplace transform f(t) using Table 10.1.

- Use partial fractions to bread down F(s) into components that match functions in the s-domain column, e.g., $\frac{1}{s-a}$, $\frac{s}{s^2+\omega^2}$, etc.
- Find the corresponding inverse transform function f(t) in the t-domain column
- If the function in s-domain is of the form $e^{-as}F(s)$, then
 - \star leave out e^{-as}
 - \star find inverse Laplace transform of F(s) to get f(t)
 - \star apply t-shift (transform pair #13)
- If the function in s-domain is of the form F(s-a), then
 - \star find inverse Laplace transform of F(s) to get f(t)
 - * multiply f(t) by e^{at} in t-domain (using transform pair #12)

function [t, y]=euler(ode, t0, tf, h, y0)
 t=t0:h:tf; v(1)=v0; for i=1:length(t)-1 y(i+1)=y(i)+h*ode(t(i), y(i));

end end

end

end

 $= 2\cos^2(\theta) - 1$

 $= 1 - 2\sin^2(\theta)$

function res=rms(lst) res=norm(lst)/sqrt(length(lst)); end

function [t, y]=rk4(f, t_bounds, y0, h)
 t=t_bounds(1):h:t_bounds(2); y(1)=y0; for i=1:length(t)-1 1=1:length(t)-1
kl=f(t(i), y(i));
k2=f(t(i)+h/2, y(i)+h/2*k1);
k3=f(t(i)+h/2, y(i)+h/2*k2);
k4=f(t(i)+h, y(i)+h*k3);
y(i+1)=y(i)+h*(k1/6+k2/3+k3/3+k4/6);

Half Angle Formulas

$$\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos(\theta)}{2}}$$
$$\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1+\cos(\theta)}{2}}$$
$$\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos(\theta)}{1+\cos(\theta)}}$$

Half Angle Formulas (alternate form)

 $\frac{\sin^2(\theta) = \frac{1}{2} \left(1 - \cos(2\theta)\right)}{\cos^2(\theta) = \frac{1}{2} \left(1 + \cos(2\theta)\right)} \tan^2(\theta) = \frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}$ $\cos^2(\theta) = \frac{1}{2} \left(1 + \cos(2\theta) \right)$