Linear 1st-Order ODEs
Y +py=r
e homogeneous: y, = Coe™ S pdz
e inhomogeneous: y = e~/ pdz( I/ el PaTrdy 4 C) derived from integrating
factor p = e/ Pd=z
Non-Linear 1st-Order ODEs

Bernoulli equation for ¥’ + py = qy™:

1-n

1. letu=y
2. Transform into u’ + p(1 — n)u = g(1 — n) to use integrating factor

(a) You can isolate y in terms of v and find ¥’ in terms of u and v to
turn everything in terms of u
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e f has equilibrium at y+ if the ODE is autonomous (meaning f =
same regardless of t) and y-val for f(y*) =

ﬂ.
at 18

My Notes on Solving ODEs

the

— stable vs. unstable can be determined by using table of factors or

evaluating f’(y#)’s sign
— Semi-stable means stable in one direction and unstable on the ot
= f(z)g(y) > [ L= [ fdz+C

e reduction for separation of variables:

e separation of variables:

—ify =f¥),u=2andy =v'z+u (. y=ur)

her

— ify = f(az + by + ¢), u=az + by + ¢ and find ¥’ in terms of u and

ul

Existence and Uniqueness
e Yor y = f(z,y) and y(zo) = yo meaning point is (zo,yo)

e Theorem 1 (existence theorem) - if f(z,y) continuous at all points in R

containing point (zo,yo) then f has 1+ solns y(z) passing through the
point

e Theorem 2 (uniqueness theorem) - if f(z,y) and fy(z,y) (AKA %5) con-
tinuous in Ry containing point, then f has a unique solution passing
through the point

o Notes
— R; is region containing point where f continuous

— Ry is region containing point where f, continuous

— Ry N R, is region of validity and x-range is interval of validity
10. Laplace Transform
e Complete the squar if cannot separate denominator and use s-shift

o L)} = [ e f(t)dt = F(s)

e Solving ODEs: ay” + by +cy=f — Y(s)=

F(s)+ayy+asyo+byo
as2+bs+c

Numeral Methods

(forward) Euler: y,,41

=y, + hy!, is explicit - all RHS terms known

backward Euler: y,11 =y + by, 4, is implicit
global error = RMS(local errors)

All explicit algorithms are conditionally stable and implicit is always
(unconditionally) stable.



eed for constant of integration

Method of Reduction of Order
Find y2 from y; for yp = c1y1 + coye

o= S pde

Y2 =uyr, Y2 = [ Sr—dx

homogeneous ODE if X is double root: y;, = cie™25% + cyxe ™ 2a®

if A complex, y, = Ae®® cos(fx)+Be® sin(fz) where a = —— A 4“_
Particular Part Method of Underdetermined Coefficients
Method of Variation of Parameters Table 8.1: Choices for y, for undetermined coefficients method
, If r(z) is... ... then y, is of the form...
Construct yp from Y, S Y and Y2
C (a constant) A
Yar
Yp=—U% [ ordr+ Y2 dx
W W z" (n must be a positive integer) | Auz" + Ap_yz" ' L+ Ajz + Ay
Wronskian W = 4,4} — €™ (y either real or complex) Ae™
cos(wr) or sin(wz) Acos(wz) + Bsin(wr)
"™ cos(wz) or z"e™ sin(wr) (Apz™ + Ay 1™ 4 4 Apz + Ag)e™ cos(we)+
(Bnz" + Bpaz™ ' + ... + Biz + By)e® sin(wz)




Electrical & Mechanical Applications References
Electrical Applications

Setting up ODE for free oscillations — Find w & A

Translational oscillations — straight-line movement

B
=

o Use Newton’s 2nd law for straight-line movement:
ma” =3 F=F+Fs
Where

‘m = mass

2(#) = displacement measured from equilibrium.

F,=—kz (a) proportional to distance z, (b) always carries a negative sign (~) (always
oppose the motion); (c) if multiple springs, add up all individual spring forces

F3 = —pa’ () proportional to velocity #, (b) always carries a negative sign (—) (always
oppose the motion); (c) if multiple dampers, add up all individual friction forces
 Force due to the weight mg of the mass does not appear in the equation even in vertical
oscillation since mg is canceled by the initial stretch/compression of the spring at rest.

e Put ODE in the form 5

m

to identify natural frequency w® = k/m and damping constant A = §/(2m)

2+ z’+£z=0
m

Rotational oscillations — Horizontal bar
Notes:

o Use Newton’s 2nd law for angular
movement:

o
b JS | O JO = 3T =T+ T,

2
k
Wiww% Where
7

J = moment of inertia of mass m about point of rotation
6(t) = angular displacement measured from equilibrium
T}, = torque of spring force about point of rotation

System of ODEs
‘We now have a system of two 2nd-order ODEs

Ty = torque of friction force about point of rotation

e Equilibrium is assumed to be horizontal

o Always assume small angle 9. Thus sinf ~ 6 and cosf ~ 1 myz + B — Bl + (ky + ky)zy — kyzy = ky Yy sin(yt) (9.56)
o J = mi?, moment of inertia of m about point of rotation (provided or obtained from mazy — By + BT — kot + (ko + k3)z2 =0 9.57
table)
o Ty = —(Fy)(re) = —(asinf)(acos ) ~ —ka?f This system can be put in matrix form as shown below:
 always carries a negative sign (—) (always oppose the motion)
+ F is spring force my 0 T 8 -8\ |z ki +ke  —ko N k1Y) sin(yt)
% 1 is torque arm = perpendicular distance from point of rotation to line of force Fi , + + =
d 0 my) |z -5 8 EA —ky  kyt+ks) |22 0
o T5 = ~(F3)(rs) = —B 5, (bsin0) (beosd) ~ —o5'
 always carries a negative sign (—) (always oppose the motion) or
* £ fiction force [M|{z"} + [B{z'} + K |{z} = {f}, (9:59)
7y is torque arm = perpendicular distance from point of rotation to line of force Fj
o Torque due to the weight mg of the mass does not appear in the equation since it is where [M ] is t.he mass matrix, [3] the friction coefﬁmemf matrix an('i [K | the stiffness
canceled by the initial stretch/compression of the spring torque at rest. coefficient matriz. It should be noted from Eq. (9.58) that, if the analysis is done correctly,
o Put ODE in the form . the stiffness coefficient matrix should be symmetric.
v e =0

- ka? ) B
to identify natural frequency w? = mE and damping constant A = ImEE



Textbook & Code References

Existence & Uniqueness
C. Interval of validity for solution passing through (x,y,) (unique solution case only)

. 1. RNR; is region of validity
Yes 2. x-range of this region is interval of validity

Linear
ODE?

A. Theorem evaluation B. Uniqueness region of ODE.

1. Find R, of f containing (xo.yo)
2. Find R; of /, containing (xs.y0)
3. R,NR; is uniqueness region
containing (xa,y0)

\ [Unique solution guaranteed
| through (xayw No

ode45

Solve ODE & evaluate C to
Yes find interval of validity

H ” ”» ” » ”» el .
— GomE options=odeset(”RelTol”, le-4, ” AbsTol”, 1le-6, ”"Refine”, 12);
No definitive answer
No Best guess: interval of validity is same as R,NR; .
Yes but probably smaller [t, y]=0de45(@myODE, tspan, y0, options);
Given: y°= fix,y)
Tnitial condition (xm) =
Are BOTH /&, Solution through (x,y,) exists but
continuous at uniqueness is still not guaranteed c —
oy ? Solve ODE & = ) o 3
___| evaluate arbitrary Multiple solutions
Yes constant C using on-unique through (x,,yg)
Foyo)
N Cantfind C Non-existent solution
© through (x,y0)
‘Must solve ODE to . ODE
determine Existence / Solvable?

Uniqueness of solution

10:3:1 General procedure for inverse Laplace transform

No Can’t conclude anything

10.2.10 General procedure to perform Laplace transform Given a function in s-domain, F(s), below is the general steps to find its inverse Laplace

transform f(¢) using Table 10.1.
Given a function f(t), below is the general procedure to find its Laplace transform F(s) with
the use of Table 10.1. Note: Laplace transform of a product of two functions, e.g., f(t)g(), o Use partial fractions to bread down F(s) into components that match functions in the
is beyond the scope of this class, except two special products e® f(t) and ¢" f(t). 1 s
s-domain column, e.g., —, ——, etc.
s—a $*+w
o Find the corresponding inverse transform function f(¢) in the ¢-domain column
o If the function in s-domain is of the form e™**F(s), then

e Break down f(t) into components that match functions in the ¢-domain column, e.g.,
cos(wt), sin(wt), ete.

o Find the corresponding transform F(s) in the s-domain column

e If the function in ¢-domain is of the form e®f(t), then

* leave out e
* find Laplace transform of f(t) to get F(s)
* apply s-shift (transform pair #12)
o If the function in ¢-domain is of the form ¢" f(¢), then
* leave out ¢
* find Laplace transform of f(t) to get F(s)
* apply transform pair #9
o If the function in ¢-domain is of the form u(t — a) f(t), then use the procedure for trans-
forming a “cut-off function” (transform pair #13)

Forward Euler

* leave out e~
x find inverse Laplace transform of F(s) to get f(t)
x apply t-shift (transform pair #13)
o If the function in s-domain is of the form F(s — a), then
x find inverse Laplace transform of F(s) to get f(t)
* multiply f(¢) by e* in ¢-domain (using transform pair #12)

function [t,y] = euler(f,t0,tf,y0,h)
t =t0:h:tf;
y(1)=y0
for n = T:length(t)-1

y(n+1) = y(n) + h*f(t(n),y(n));

NUM_POINTS=20;

x_points=linspace(-1, 1, NUM_POINTS);
y_points=linspace(-2, 2, NUM_POINTS);
[X, Yl=meshgrid(x_points, y_points);

v_x=ones (NUM_POINTS, NUM_POINTS);

function [t, yl=euler(ode, t0, tf, h, y@)
t=t0:h:tf;
y(1)=y0;
for i=1:1length(t)-1
y(i+1)=y(i)+h*xode(t(i), y(i));
end
end

end v_y=X+Y.*(1-Y); %O0DE(X, Y)
end

function res=rms(1lst)
Backward Euler

% Normalize res=norm(1lst)/sqrt(length(lst));

function [t, yl=euler(f, t0, tf, y0, h) length = sqrt(v_x.”2+v_y."2); end
t=tO:h:tf; v_x = v_x./length;
y(1)=y0; v_y = v_y./length;
for i=1:length(t)-1 .
(i+1)=... %derive eqn first quiver(X, ¥, v.x, v_y); i
y =... 70 q title("Direction Field for y'=x+y(1-y)") function [t, yl=rk4(f, t_bounds, y@, h)
end v t=t_bounds(1):h:t_bounds(2);
xlabel("X") y(1)=ye;
end ylabel("Y") for i=1:length(t)-1
; o axis([-1, 1, -2, 21) k1=f(t(i), y(i));
Tunction 1%, yl=backvard_euler(ts, ‘tfn b, ¥0} e k2=f(t(i)+h/2, y(i)+h/2%k1);
y(1)2y0; Sum and Difference Formulas K3=F(t(i)+h/2, y(i)+h/2%k2);

k4=f(t(i)+h, y(i)+hxk3);

for n=1:1length(t)-1
y(i+1)=y(i)+hx(k1/6+k2/3+k3/3+k4/6);

y(n+1)=(y(n) +akhicos (3t (n+1)))/ (h+1); sin(a & B) = sin(a) cos(B) + cos(a) sin(B)
end cos(a + ) = cos(a) cos(B) F sin(a) sin(B) e

tan(a) + tan(B)
1 Ftan(a) tan(B)

d

>

tan(a £+ 8) =

sigma=10; b=8/3;

r=20;

tspan=[0,30];
0= [R5

Sum to Product Formulas

sin(a) + sin(8) = 2sin (a + ’B)

)n

Double Angle Formulas Half Angle Formulas
sin(26) = 2sin(6) cos()

c0s(26) = cos?(6) — sin®(9)  Sin (g) = iv 1—+05(0)

(@(t,y) (t, y, sigma, r, b), tspan, Y0);

sin(a) — sin(8) = 2 cos (

; cos(a) + cos(8) = 2cos ( ﬂ) cos ( 3 ) — 20082(8) — 1 . - -
y(t)', 'z(t)") o 1 2sine) cos(_):i + cos(6)
z Attractor, x(t), y(t), z(t)') cos(a) —cos(8) 7_25"1( )Sm( ) () ’ ’
2tan
function Yp (t,Y,sigma,r,b) Cofunction Formulas tan(20) = ;— 5% —tan’(9) tan (g) -t [1— cos(f)
Yp( ) Brl%? SIeT sin ( ) =cos(d) cos (g - 9) = sin(6) 2 1+ cos(6)
1)=sigma 2 1
(2)=r£Y(1)-Y(2)-Y(1)%Y(3); csc( ) =sec(d) sec (’21 - 9) = csc(6) Half Angle Formulas (alternate form)
o (3)=Y(2)%Y(2)-bxY(3); tan (_ —0) — cot(9) cot(f _0) — tan(0) sin(9) = 1 (1 — cos(26)) an’(6) = 1 — cos(26)
2 2 cos?() = 1 (1 + cos(26)) 1+ cos(20)



